o« -

* REPORT DOCUMENTATION PAGE

Public fepOrTinG CUrden fOr this cottection o :R*armation s 2stimated 1o average ! nour per ~esporse. IN<iuding the ime fOf reviewing INSIructions, searcning exstng data sources,
gathering ana maintaining the data needeq, and completing ana reviewng the collection of information. Sena comments regarding this burden esttmate or any Stner asoect of this
coliection 21 informanion, -roiuaing suggestions for reducing this buraen. to Washington Heagguarters Services, Directorate for information Qperations ana Repcris, 1215 :efferson
Davis Higrway, Suite 1204, Artington, VA 22292-4302. and to the Ottice of Management sna 8uoget. Paperwork Reguction Project (0704-0188), Wasnington, 5C 20503.
2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 94 Technical

5. FUNDING NUMBERS

Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE
Load Balancing for the Parallel Adaptive Solution of
Partial Differential Equations

DAALO3-91-G-0215

6. AUTHOR(S)

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

10. SPONSORING/MONITORING

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADD
AGENCY REPORT NUMBER

U.S. Army Research Office
P.0. Box 12211

Research Triangle Park, NC 27709-2211 ARO 29167.25-MA

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON FIRST PAGE OF REPORT

9990203 22

15. NUMBER OF PAGES

14. SUBJECT TERMS
33

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
ffrﬂsc_rl?ed by ANSI Std. Z39-18

@
Rensselaer

Department of Computer Science
Technical Report

Load Balancing for the Parallel Adaptive
Solution of Partial Differential Equations

H. L. deCougny, K. D. Devine, J. E. Flaherty, R. M. Loy,
C. Ozturan, and M. S. Shephard

Scientific Computation Research Center
Rensselaer Polytechnic Institute
Troy, New York 12180-3590

\ Accesion For

NTIS CRA& g
0

DTIC TAB
Unannounced
Justification _ .

2 — ST—

Distribution]

r Availability Codes

Avail and |or
Dist Special

-

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Report No. 94-8 April 1994

DISCLAIMER NOTICE

S DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

=

Load Balancing for the Parallel
Adaptive Solution of Partial Differential
Equations

H. L. deCougny, K. D. Devine, J. E. Flaherty, R. M. Loy,

C. Ozturan, and M. S. Shephard

Scientific Computation Research Center, Rensselaer Polytechnic Institute
Troy, New York 12180-3590.

Dedicated to Bob Vichnevetsky on the occasion of his siztieth birthday.

Abstract

An adaptive technique for a partial differential system automatically ad-
justs a computational mesh or varies the order of a numerical procedure
with a goal of obtaining a solution satisfying prescribed accuracy crite-
ria in an optimal fashion. Processor load imbalances will, therefore, be
introduced at adaptive enrichment steps during the course of a parallel
computation. We develop and describe three procedures for retaining and
restoring load balance that have low unit cost and are appropriate for use
in an adaptive solution environment.

Tiling balances loading by using local optimality criteria within over-
lapping processor neighborhoods. Elemental data are migrated between
processors within the same neighborhoods to restore balance. Tiling can
potentially be improved by creating a dynamic partition graph connect-
ing processors and their neighboring regions. After coloring the edges of
the graph, elemental data are transferred between processors by pairwise
exchange.

Octree decomposition of a spatial domain is a successful three-
dimensional mesh generation strategy. By performing tree traversals that
(i) appraise subtree costs and (ii) partition spatial regions accordingly, we
show that octree structures may also be used to balance processor loading.

Computational results are reported for two- and three-dimensional sys-
tems using nCUBE/2 hypercube, MasPar MP-2, and Thinking Machines
CM-5 computers.

1 Introduction

Adaptive finite element methods that automatically refine or coarsen meshes
(h-refinement) and/or vary the order of accuracy of a method (p-refinement)
offer greater reliability, robustness, and computational efficiency than tradi-

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 2

tional numerical approaches for solving partial differential equations. High-
order methods and the combination of mesh refinement and order variation
(hp-refinement) can produce remarkably efficient methods with exponential
convergence rates [2, 4, 5, 11, 12, 27]. Like adaptivity, parallel computation
is making it possible to solve previously intractable problems. With problems
continuing to increase in complexity through the inclusion of more realistic ef-
fects in models, it seems natural to unite adaptivity and parallelism to achieve
the highest gains in efficiency. Adaptivity, however, introduces complications
that do not arise when simpler solution strategies are implemented on parallel
computers. Adaptive algorithms utilize unstructured [2] or hierarchical [3, 7]
meshes that make the task of balancing processor loading much more difficult
than with uniform structures. A balanced loading will, furthermore, become
unbalanced as additional degrees of freedom are introduced or removed by
adaptive h- and p-refinement.

Successful load partitioning strategies for unstructured-mesh computation
on distributed-memory parallel computers employ recursive bisection to re-
peatedly split the discretized domain into two sub-domains having balanced
loading. Specific techniques use geometric [6], connectivity [16], or spectral [26]
information. When applied to the entire mesh, recursive bisection methods
require a complete remapping of the elements of the mesh and, thus, involve
a substantial overhead. Some methods also require considerable computa-
tion. Thus, global recursive bisection methods are too expensive for use with
an adaptive method which, as noted, requires repeated mesh redistribution
through the course of a computation. Recursive bisection may be of use with
an adaptive strategy if applied locally to regions of the domain affected by
adaptive enrichment [33].

Two partitioning strategies described herein use local migration to ex-
change elements between processors associated with neighboring spatial re-
gions in order to achieve a global load balance. Local interchanges propagate
incremental changes in the mesh or method between processors without solving
an expensive global partitioning problem. Local computational cost metrics,
such as the number of degrees of freedom, can be combined with similar infor-
mation on partition boundaries to minimize the total workload including both
the computational and communications efforts. ‘

Our most mature partitioning strategy tiling [34] is a modification of a
dynamic load balancing technique developed by Leiss and Reddy [25] that
balances work within overlapping processor neighborhoods to achieve a global
load balance. Work is migrated from a processor to others within the same
neighborhood to obtain local optimality. We demonstrate the performance
of tiling by using it with adaptive h- and p-refinement strategies to solve
two-dimensional transient systems of conservation laws on a 256-processor
nCUBE/2 hypercube (cf. Section 2).

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution - 3

Tiling can potentially be improved by creating a dynamic partition graph
connecting processors and their neighboring regions. Loading information can
be used to color edges of the partition graph so that work can be transferred
between pairs of processors in a manner similar to a pairwise heuristic strategy
introduced by Hammond [19]. This strategy, described in Section 3, distributes
load imbalances more quickly than tiling and simplifies the task of minimizing
a partition’s communications volume. Two-dimensional computations per-
formed on a MasPar MP-2 SIMD system demonstrate some capabilities of
this procedure.

Octree decomposition is a successful strategy for generating three-
dimensional unstructured meshes [29] and we develop (cf. Section 4) a parti-
tioning technique that exploits the properties of tree-structured meshes. Par-
titioning may be done locally or globally, but, in either case, it is inexpensive
and, hence, may be with adaptive procedures. Partitioning is based on two
tree traversals that (i) calculate the processing costs of subtrees connected to
each node and (ii) form the partitions. When used globally, partitions have ap-
proximately the same communications volume as other strategies [21, 24, 26],
but their cost is far less. We demonstrate the performance of the tree-based
partitioning technique on three-dimensional meshes that are associated with
flight vehicle flows. Results computed on a Thinking Machines CM-5 computer
are presented for an adaptive h-refinement solution of the Euler equations for
a supersonic conical flow.

2 Tiling

2.1 Adaptive Enrichment

We describe adaptive h- and p-refinement local time-stepping algorithms that
are being used with the tiling partitioning scheme (Section 2.2) but which
are typical of adaptive strategies. Applied to vector systems of conservation
laws, finite element solutions U(x,t) are obtained on a two-dimensional net
of rectangular elements using a spatially discontinuous Galerkin method 5, 8,
9, 10] and explicit Runge-Kutta integration [5]. A spatial discretization error
estimate E(t) in the L' norm is obtained by p-refinement [5, 11] and used to
control adaptive spatial enrichment so that E(t) < ¢, for a prescribed tolerance
€.

With adaptive p-refinement (cf. Figure 1) , we initialize U(x,0) to the
lowest-degree polynomial satisfying E;(0) < ¢/J, j = 1,2,...,J, where E;(t)
is the restriction of E(t) to element j and J is the number of elements in the
mesh. After each time step, we compute E;, j = 1,2, ... ,J, and increase the
polynomial degree of U on element j by one if E; > ¢ /J (=TOL). The solution
U and the error estimate are recomputed on enriched elements, and further
increases of degree occur until E; < TOL on all elements. The need for back-

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 1

void adaptive_p_refinement|()
{
while (t < tfinal) {
perform_runge kutta_time step(all_elements);
do {
Solution_Accepted = TRUE:
for each element {
error_estimate = calculate_estimate();
if (error_estimate > TOL) {
mark_element_as_unnacceptable();
increase_elements_polynomial _degree();

Solution_Accepted = FALSE;

}

}
if (!Solution_Accepted) {

recalculate_solution_on_unacceptable_elements();
}
} while (!Solution_Accepted);
accept_solution(all_elements);

predict_degrees_for_next_time step(all_elements);
t =1t+ At

Figure 1: An adaptive p-refinement procedure.

tracking may be reduced by predicting the degree of the approximation needed
to satisfy the accuracy requirements for the subsequent time step. After a time
step is accepted, if E; > Hpmez TOL, Hpmqr € (0,1], we increase the degree of
U(t+At) on element j for the next time step. If E; < Hynin TOL, Hppir € [0,1),
we decrease the degree of U(¢ + At) for the next time step.

In the adaptive h-refinement method, we locally refine element j if E; >
TOL/2™, where m is the level of refinement. Refinement involves dividing
an element into four and initializing the solution through L?-projection of the
coarse data [5]. Elements neighboring high-error elements are also refined
to provide a buffer-zone between high- and low-error regions and maintain a
difference of at most one level of refinement across element edges. For each
time step, the local finite element method [5] is applied on successively finer
meshes. To satisfy the Courant conditions, the time step is halved on each
finer mesh. An outline of the h-refinement algorithm is shown in Figure 2.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 3

void adaptive h_refinement(mesh, ¢+, ttinal, At)

{

t= Cstart;
while (t < t_final) {
perform runge kutta_time_step(all elements of mesh);
for each element of mesh {
error_estimate = calculate_estimate();
fine.mesh = mesh — nextmesh;
if ((error_estimate > TOL) && (element.not_refined_yet)) {
refine_element into_four_fine_elements();
add_new_elements(fine.mesh);
}
}
if (mesh is refined) {
buffer(fine_mesh);
project_coarse_data(mesh, fine_mesh);
adaptive_h refinement(fine_mesh, t, t + At, At/2);
interpolate fine_solution_to_coarse_mesh(fine_mesh, mesh);

Figure 2: An adaptive A-refinement procedure.

2.2 Dynamic Load Balancing via Tiling

As noted, tiling is a modification of a load balancing technique of Leiss and
Reddy [25, 28] who used local optimality criteria within overlapping neighbor-
hoods. A neighborhood consisted of a processor at the center of a cricle of a
given radius and all processors within that circle. With tiling, we extend the
definition of a neighborhood to include all processors having finite elements
that are neighbors of elements in the central processor (cf. Figure 3). Every
processor is the center of one neighborhood, and may belong to many neigh-
borhoods. Elements are migrated only to processors having neighbors of the
migrating elements.

The tiling algorithm consists of (i) a computation phase and (i) a balancing
phase, and is designed to be independent of the application. The computation
phase corresponds to the application’s implementation without load balancing.
Each processor operates on its local data, exchanges inter-processor boundary .
data, and processes the boundary data. A balancing phase restores load bal-
ance following a given number of computation phases. Each balancing phase

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 6

-- processor subdomain

Figure 3: Example of 12 processors in 12 neighborhoods using tiling.

consists of the following operations:

1. Each processor determines its work load as the time to process its local
data since the previous balancing phase less the time to exchange inter-
processor boundary data during the computation phase. Neighborhood
average work loads are also calculated.

2. Each processor compares its work load to the work load of the other
processors in its neighborhood and determines those processors having
loads greater than its own. If any are found, it selects the one with the
greatest work load (ties are broken arbitrarily) and sends a request for
work to that processor. Each processor may send only one work request,
but a single processor may receive several work requests.

. Each processor prioritizes the work requests it receives based on the
request size, and determines which elements to export to the requesting
processor. Details of the selection algorithm are given below.

. Once elements to be exported have been selected, the importing proces-
sors and processors containing neighbors of the exported elements are
notified. Importing processors allocate space for the incoming elements,
and the elements are transferred.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 7

Each processor knows the number of computation phases to perform before
entering the balancing phase. Synchronization guarantees that all processors
enter the balancing phase at the same time.

The technique for selecting elements gives priority to elements with neigh-
bors in the importing processor to prevent the creation of “narrow, deep holes”
in the element structures. Elements are assigned priorities (initially zero) based
upon the locality of their neighbors. An element’s priority is decreased by one
for each neighbor in its own processor, increased by two for each neighbor in
the importing processor, and decreased by two for each neighbor in some other
processor. Thus, elements whose neighbors are already in the importing pro-
cessor are more likely to be exported to that processor than elements whose
neighbors are in the exporting processor or some other processor. When an
element has no neighboring elements in its local processor, it is advantageous
to export it to any processor having its neighbors. Thus, “orphaned” elements
are given the highest export priority.

Because individual elements’ processing costs can vary widely in the adap-
tive p-refinement method, elemental processing costs are computed and used
so that the minimum number of elements satisfying the work request are ex-
ported. This approach differs from Wheat [34], where the average cost per
element is used to determine the number of export elements. When two or
more elements have the same priority, the processor selects the element with
the largest work load that does not cause the exported work to exceed the
work request or the work available for export.

In the adaptive h-refinement method, the local time-stepping scheme out-
lined in Figure 2 requires that each mesh level be distributed evenly over the
processor array to avoid idle time. Communication costs are increased since
offspring elements may be on different processors than their parent elements;
however, the increase in communication time is outweighed by a decrease in
processor idle time. Memory overhead for the tiling algorithm is also increased,
as processor location information for parent and offspring elements must be
maintained and ghost elements must be allocated for non-local coarse elements
along coarse-fine mesh interfaces. Selection priority schemes which account for
the interconnections between mesh levels could reduce the additional commu-
nication and storage needed; such schemes are the subject of future study.

Example 2.1 We solve

us + 2uz +2u, =0, t>0, : (la)

on 0 < z,y <1 with initial and boundary conditions specified so that

u(z,y,t) = %[1 — tanh(20z — 10y — 20¢ + 5)], (1b)

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 8

pr=0 Mp=1 Mpr=2 MWr=3 Npr=+4

Figure 4: Processor domain decomposition after 20 time steps for Example 2.1
using adaptive p-refinement and tiling. Dark lines represent processor subdo-
main boundaries.

using adaptive p-refinement on a 32 x 32-element mesh with TOL = 3.5 x 103
and tiling on 16 processors. In Figure 4 we show the processor domain de-
composition after 20 time steps. The shaded elements have higher-degree ap-
proximations and, thus, higher work loads. The tiling algorithm redistributes
the work so that processors with high-order approximations have fewer ele-
ments than those processors with low-order approximations. The total pro-
cessing time for the adaptive p-refinement method was reduced 41.98% from
63.94 seconds to 37.10 seconds by balancing once each time step. The av-
erage/maximum processor work ratio without balancing is 0.362, and with
balancing, it is 0.695. Parallel efficiency is increased from 35.10% without
balancing to 60.51% with tiling.

We also solve (1) using the adaptive h-refinement method on a 16 x 16-
element base mesh with TOL = 1.0 x 1072 and tiling on 4 processors. In
Figure 5 we show the processor domain decomposition after 10 times steps.
The decomposition is shown for each mesh level. The total processing time
for the adaptive h-refinement method was reduced 58.0% from 104.89 seconds
to 44.01 seconds by balancing a mesh after each time step on the mesh. The
average/maximum processor work ratio without balancing is 0.271, and with
balancing, it is 0.747. Parallel efficiency is increased from 26.7% without
balancing to 63.8% with tiling.

Example 2.2 Again, we solve (1) on = (0,16) x (—=7.5,8.5) with a fixed-
order method (p = 2) and the adaptive p-refinement method for 86 time steps
to ¢ = 0.3 using a 160 x 160-element mesh on 256 processors of the nCUBE/2

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 9

Figure 5: Processor domain decomposition after 10 time steps for Example 2.1
using adaptive h-refinement and tiling. The decomposition on each mesh level
is shown.

without balancing and with balancing once each time step. In the adaptive
p-refinement method, polynomial degrees of the elements varied from 0 to
2, and computation time per element varied from 0.02 to 1.2 seconds per
time step, indicating a great deal of imbalance along the front. Even without
balancing, the adaptive p-refinement method required 65.7% less execution
time than the fixed-order method to achieve comparable accuracy (cf. Table 1).
With balancing, the maximum computation time of the adaptive method (not
including communication or balancing time) was further reduced by 78.1%.
The irregular subdomain boundaries created by the tiling algorithm increased
the average communication time by 40.7%. Despite the extra communication
time and the load balancing time, however, we see a 70.1% improvement in
the total execution time over the non-balanced adaptive method, and 89.7%
over the fixed-order method.

Example 2.3 We solve

U+ 2up +2uy, =0, t>0, (2a)

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 10

Adaptive p-refinement | Fixed-order
Without With Without
Tiling Tiling Tiling

Total Execution
Time (seconds) 3636.53 1088.36 10,590.87

Max. Computation
Time (seconds) 3557.77 778.57 10,570.07

Average/Maximum
Work Ratio 0.118 0.543 0.999
Avg. Communication
Time (seconds) 22.31 31.38 19.03
Max. Balancing
Time (seconds) 0.00 28.98 0.00
Parallel
Efficiency 11.62% 38.84% 99.71%

Table 1: Performance comparison for Example 2.2 using adaptive p-refinement
without balancing and with balancing at each time step, and a fixed-order
method yielding comparable accuracy.

on ? =(0,16) x (—7.5,8.5) with initial and boundary conditions specified so
that

w(z,y,t) = -;-(1 — tanh(100z — 10y — 20¢ + 5), (2b)

with p = 0 on a uniform 640 x 640-element mesh and on a 160 x 160-element
base mesh with adaptive A-refinement for 60 time steps on 256 processors
without balancing and with balancing once after each time step on each mesh
level. Two levels of refinement were used along the steep front. We compare
the adaptive h-refinement computation with a uniform-mesh computation of
similar accuracy. The adaptive solution required 46.9% less total execution
time than the non-adaptive solution, despite the load imbalances created by
the adaptive method (cfTable 2). We further reduce the execution time by
combining balancing with the adaptive h-refinement method. With balancing,
the maximum computation time (not including communication or balancing
time) was reduced by 86.1% over the adaptive method without balancing.
The average communication time with balancing is nearly doubled, due to
the communication between coarse and fine mesh elements that have been
migrated to different processors. The total balancing time is larger than the
balancing time for p-refinement, since many more balancing phases are used as -
each mesh level is load balanced. Despite the tiling overhead, however, we see
an 80.3% improvement in the total execution time of the A-refinement method.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 11

Adaptive h-refinement | Uniform Mesh
Without With Without
Tiling Tiling Tiling
Total Execution
Time (seconds) 3455.07 681.48 6508.16
Max. Computation
Time (seconds) 3430.17 476.00 6491.07
Average/Maximum
Work Ratio 0.0743 0.535 1.000
Avg. Communication
Time (seconds) 7.68 15.33 14.82
Max. Balancing
Time (seconds) 0.00 42.14 0.00
Parallel
Efficiency 7.38% 37.36% 99.70%

Table 2: Performance comparison for Example 2.3 using adaptive h-refinement
without balancing and with balancing at each time step on each mesh level,
and a uniform mesh yielding comparable accuracy.

3 Element Redistribution by Pairwise Exchange

3.1 Redistribution

The element redistribution algorithm and its similarities and differences to the
tiling procedure of Section 2 are described through an example. Consider the
unbalanced mesh distribution over eleven processors as shown in Figure 6(a).
Let Gp(V, E) be a partition graph with each vertex in V representing a par-
tition assigned to a processor and E representing the set of edges between
partitions. Two partitions u and v are connected by an edge (u,v) € E if
they share a mesh edge. If two partitions share only a mesh vertex, then they
are not considered adjacent in the partition graph. The reason for the mesh
edge connectivity requirement between partitions in Gp is twofold. First, by
excluding vertex adjacency, the number of edges in E and, hence, the time to
communicate with adjacent processors is kept minimal. Second, transferring
elements between partitions that share only a vertex results in a higher surface
to volume ratio which increases communication cost. Figure 6(b) shows the
partition graph obtained from the mesh distribution in Figure 6(a).
Following Leiss and Reddy [25], a workload deficient processor will request
work from its most heavily loaded neighbor. As a result, a processor can
receive multiple requests but can only request load from one processor. This

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 12

Figure 6: (a) Unbalanced load in each partition, (b) partition graph Pg, (c)
load request, (d) load transfer between pairs in steps 0,1,2,3.

pattern of requests produces a load hierarchy and forms a forest of trees T; as
shown in Figure 6(c). The trees T; in the forest are subgraphs of the partition
graph Gp. _

The current proposed algorithm for redistribution pairs the processors on
each tree T; and transfers load from the heavily loaded pair to the other.
The pairing of processors is equivalent to coloring the edges of each tree T;
with colors representing separate load transfer (communication) cycles. The
edge coloring approach synchronizes the load transfer between neighboring
processors and differs from the approach of Section 2. In this implementation,
processors P, and P; in Figure 6(b) would be engaged with load transfer with
only one neighbor at a single transfer step. With tiling, however, processors
P, and P; would receive and send work during the same transfer step. Tiling
would be more efficient if there were load transfer in one direction only, i.e.,

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 13

from heavily loaded to less loaded processor. Processors P; and P- would be
doing useful work packing elements to be transferred to their offspring while
their parents pack elements to be transferred to them. With the suggested
exchange, processors P, and P; would remain idle waiting for load transfer
from parents and would transfer load to offspring after the transfer from the
parent has been completed. However, this disadvantage is overshadowed by
a number of advantages. First, a smaller number of messages and the syn-
chronous transfer of load increase communication performance. Second, since
the processors are synchronized by pairs, a greater repertoire of selection cri-
teria can be used to decide which elements to transfer. Unlike tiling, where
elements can only be transferred from heavily loaded to less loaded processors,
the pairing allows elements to be transferred from the less loaded to the heav-
ily loaded pair. This can be useful in improving the surface to volume ratio
of the partitions. Since there is no explicit synchronization by edge coloring
with tiling, a bidirectional transfer of load would be extremely difficult.

Figure 6(d) shows the coloring phase used to pair the processors. If A(G)
denotes the maximum vertex degree (number of edges incident on a vertex) in
a graph G, then Vizing’s theorem [36] indicates that the graph G can be edge-
colored using C' colors where A(G) < C < A(G) + 1. For some special graphs
including the trees the number of colors needed is exactly A(G). Therefore,
A(T;) colors are required to color the tree T..

The main steps of the redistribute algorithm are illustrated in Figure 7 and
the detailed steps follow:

1. The transfer of work between paired processors is iterated until the load
on each processor converges to a value close to the optimal balance (cf.
Section 3.2).

2. Load differences are computed by having each processor send a load
value to its neighbors and correspondingly receive load values from its
neighbors. This step takes A(Gp) time.

3. The Leiss and Reddy [25] load request process is invoked and this results
in the forest of trees T;. An edge of G, is simply marked when a request
has been made indicating whether or not it is a tree edge. Since the

incoming requests for load should be sorted, this step takes O(max;{d; -
log d;}) time where d; = A(T}).

4. Deciding how much load to transfer to requesting processors is crucial in
making the redistribution algorithm to converge. Criteria for this step
are given with convergence criteria in Section 3.2.

5. To facilitate efficient parallel scan operations on the trees T}, each tree
is linearized by setting links between neighboring processors. The links

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 14

void redistribute(mesh,tol imbalance,maz iters)

{

=1

mypid = get_my _processor_id();

iter =0 ;

while (imbalance(mesh) > tol_imbalance && iter < maz_ters) {
compute neighboring_load differences(mesh);
proc = neighbor_having largest _load difference(mesh);
T = request_load from neighbor(proc,mesh);
determine_amount_of load_to_send_or.receive(T",mesh);
set_up_links_to_linearize_tree(T);
color_tree(T);

for each color C' {
if (processor_owns. color(C',my:id) &&
is_a_neighbor_of_color_pair(C,mypid,pair_processor))
transfer load_between_pair(mesh,mypid,pair_processor);
}
iter = iter + 1;

}

Figure 7: Redistribution algorithm.

can be constructed by either defining an Euler Tour [22] or a depth first
traversal [31] of the tree.

The linearized tree is edge-colored by employing a parallel scan oper-
ation. Since there can be up to A(T;) links on a processor, the scan
operation using the Euler Tour links takes O(max;{d; - log |V;|}) where
|Vi| denotes the number of vertices in tree T:. The use of depth first
traversal links stores 2 links per processor and hence enables a more
efficient scanning step with complexity O(max;{log |V}|}).

The steps of the load transfer are synchronized by the edge coloring of
the tree. One iteration of the redistribution algorithm involves C' steps
corresponding to the max;(A(T;)) colors. Note that this synchronization
also allows for bi-directional transfer of load between pair processors.

The elements to be transferred are selected. As with tiling, a cost is
associated with the partition boundary elements. This cost reflects the
communication as well as the computational cost of the element. The

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 15

element that will yield the smallest increase in communication cost will
be transferred.

3.2 Load Transfer and Convergence

Suppose a parent processor with load value Lo has m load requesting offspring
with load values L;, i = 1,2,...,m, as shown in Figure 8(a). Each offspring
requests an amount r; which is equal to the difference from its current load to
the average of its and its parent’s load, i.e.,

ri = [(Lo — Li)/2]. (3)
The parent processor will decide to send a total amount which will make its
load become the average of the loads L;, i = 0,1,...,m,
izo L

tosend;; = Lo — e

The parent determines the individual amounts to_send; to transfer to children
in proportion to the their load request:
. T
to_send; = min{r;, to_sendy, - ———1}.

j=1T3

The minimum of the two values is taken in order to prevent transferring loads
greater than the requested load. Figure 8(b) shows the load requests and load
grants for a subtree in the redistribution example.

sender sender

4
n=

receivers

receivers

(a) (b)

Figure 8: (a) Load request r; = [(Lo— L;)/2] from sender and (b) an example
of transferred amounts.

Convergence of the iterative load balancing algorithm without limit cy-
cles (indefinite repeated load transfer patterns) was investigated by Leiss and
Reddy [25]. Let an H-neighborhood denote the neighbors of a processor within

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 16

a distance of H and C denote a load threshold value. If elements are taken as
load units, then C = 1. Also let d indicate the diameter (the maximum of all
the shortest paths between any two nodes) of the processor graph which in the
present case is the partition graph. Finally, define H-neighborhood imbalance
at time ¢ as the variance

GIMBY = Y (L(p) - a)*.
peEP

Here P is the processor set, L(p) is the load value on processor p, and « is the
average load value per processor. Leiss and Reddy show that

1. after a rebalancing iteration GIMBif' < GIM BY; and

2. after balancing terminates, the maximum imbalance in the whole system
is bounded by [:% - C1.

According to the first result, the imbalance in the neighborhood and not nec-
essarily the whole system will reach a minimum since GIM B}, is a decreasing
function of . The second result states that if the system is neighborhood-
balanced, the whole system can still be severely imbalanced. A worst case ex-
ample is the configuration with n processors forming a one-dimensional chain
and each having a load that differs from neighbor only by L;y; — L; = 1, i.e.,
a load ramp. If H =1 and C =1, then, since d = n, the imbalance after ter-
mination of the algorithm will be n/2. Increasing the neighborhood measure
H to n/2 will balance the system globally. However, H = n/2 will require
each of the n processors to send messages to the n/2 H-neighbors. Hence,
choosing H = n/2 is impractical. In general, the case H > 1 will increase
the communication volume and hence make the iterative balancing algorithm
inefficient.

To avoid this problem with Leiss and Reddy’s [25] approach while keeping
H =1, two modifications are made to handle the case when the load difference
between the neighboring processors is C. Unlike tiling, which sends at most
(Lo — L;)/2| work units and considers Lo — L; = 1 as balanced, the current
procedure exchanges the excess load as given by Eq (3) even if GI M B remains
the same. Hence, it allows the case when GIM Bi' < GIM B,;. The previous
exchange is stored to ensure that excess load is not transferred back to the
original processor preventing period two limit cycles. This period modification
does not, however, avoid cycles of period greater than two.

Example 3.1 The iterative redistribution heuristic was tested on the MasPar
MP-2 system which has a torus connected architecture and a SIMD style of
computation. Up to 2048 processors were used in the test cases with each pro-
cessor having 64K bytes of memory. The MasPar system provides two types

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 17

of communication mechanisms. The rnet mechanism provides a fast eight-way
communication between processors arranged in a mesh topology. The router
provides a slower general purpose communication among any pair of proces-
sors. Since our applications involve highly unstructured meshes with curved
boundaries, the communication requirements between mapped partitions are
irregular. Hence, the slower router communication had to be chosen for the
implementation.

Four test cases involving meshes on a square and an irregular region were
run. Starting with a coarse mesh, Orthogonal Recursive Bisection [6] was used
to get an initial partition. The partitioned mesh was mapped onto the pro-
cessors and refined selectively in parallel to create imbalanced processor loads.
The square mesh was refined in one corner to create a “plateau” of high load
distribution. As the neighboring load transfers progress, the plateau evolves
to the difficult redistribution example involving a ramp load distribution. Ta-
ble 3 shows various statistics for the test cases. In squarel, a small mesh with
16 processors was employed (cf. Figure 9). In square2 and square3, 2048 pro-
cessors were employed with refinement in 4 and 16 processors respectively in
the upper right corner of the mesh as shown in Figure 10(a). The final test
involved a highly unstructured mesh with a curved boundary (Figure 11).

Number Number Average Load Max boundary | Number
of of elements per (Min,Max) edges of Time
Test elements | processors processor before I after | before | after | iterations | (secs)
squarel 164 16 10.25 2,32 7,11 16 12 25 9.7
square?2 32904 2048 16.06 16.52 16,18 24 21 63 33.6
square3 33300 2048 16.25 16,52 16,18 24 25 398 214.9
curved 1008 32 31.5 18,47 | 31,32 22 25 25 12.3

Table 3: Test cases and various statistics before and after convergence to load
balance

In Table 3, we list the average number of elements per processor, the max-
imum and minimum loads and the maximum number of edges located on the
boundary of the partitions before and after the redistribution algorithm has
been run until convergence to optimal load balance. Tests squarel, square2,
and curved show good convergence results. Test square3, on the other hand,
shows slow convergence even though the number of elements and the maxi-
mum imbalance is similar to the square2 test. Since a ramp evolves during
redistribution, the amount of load that can be transferred from the high load
plateau to the less loaded processors is small. In the worst case of a one-
dimensional ramp with a unit load difference between neighboring processors,
the maximum number of elements that can be transferred per iteration is one.
Hence, the larger the excess load to be migrated from the plateau, the slower

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 18

the convergence of the redistribution algorithm. The average load and the
distance the elements have to travel is approximately the same in both the
square2 and square3 test cases. Since square3 has four times the excess load
of square2, we would expect the number of iterations of square3 to be around
four times that of square2. The convergence history, shown in F igures 10(b)
and 10(c), point to this effect.

The number of boundary edges, which represents the communications vol-
ume of a partition, does not necessarily decrease after redistribution. Whereas
tests squarel and square2 showed a slight reduction, square2? and curved
meshes showed an increase in the number of boundary edges after balancing.
Hence, even though the redistribution algorithm performs well in reducing the
imbalance, the selection criteria used for element migration does not guarantee
reduction of communication costs.

‘max load” *—
0F “average load™ "

(a) (b) (c)

Figure 9: Test squarel of Example 3.1: (a) unbalanced load after mesh refine-
ment, (b) after redistribution, and (c) convergence history.

u s
“ma ol > ‘mac ok -

% snge e+ © wrerage iond”
4 . L
© “

ouxmber oumber

of wt of 3

clemems clements
» Wi
pil 2]
-4 0
18 t r T : . " +- , y

[» o “ » « ») 0 W N0 30 X0 0 0
Heratons ueranons

Figure 10: (a) Test mesh for square2 and square3 of Example 3.1, (b) and (c)
corresponding convergence histories.

The convergence history plots given in Figures 9-11 show a sharp drop in
the imbalance within the first few iterations and slower drops in later iterations.
We further demonstrate the performance of the heuristic in Table 4 by listing
the number of iterations and the cpu time required to achieve 50%,75% and

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 19

‘max load” * q
“yenge load” |

(a) (b)

Figure 11: Test curved of Example 3.1. (a) initial ORB partitioned coarse
mesh, (b) unbalanced mesh after refinement, (c) balanced mesh after redistri-
bution, and (d) convergence history.

90% reduction in the original imbalance. Since higher percentage reductions
require far more iterations, a trade-off can be established between the time to
do a computation with an imbalanced load and the time needed to achieve
further reductions in imbalance. As a result, the redistribution process can be
stopped at a smaller number of iterations.

Percent Reduction in Imbalance
Iterations Time(secs)
Test |150% | 75% | 90% |50 % | 75% | 90 %

squarel 4) 10 5.2 5.7 7.6
square2 4 11 30 7.1 | 12.7 | 21.9
square3 13 29 98 28.6 | 47.7 | 92.8
curved 2 4 9 44 6.4 8.9

Table 4: Iterations and cpu times to achieve various percent reductions in
imbalance for Example 3.1.

4 Octree-Based Partitioning

We describe a tree-based partitioning technique that utilizes the hierarchical
structure of octree-derived unstructured meshes to distribute elemental data
across processors’ memories while reducing the amount of data that must be
exchanged between processors. An octree-based mesh generator [29] recur-
sively subdivides an embedding of the problem domain in a cubic universe
into eight octants wherever more resolution is required. Octant bisection is
initially based on geometric features of the domain but solution-based crite-
ria are introduced during adaptive h-refinement. Finite element meshes of

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 20

(a) (b)

N
J

(c)

A 4Q 4D QO 0 Q ANFANYA) O) Q) O
ANV ANV ARFARVANY ANV A NN A WA A AN ODOQQ A AN a4 4

O 40400 04084040

Figure 12: (a) A quadtree representation of the flow field surrounding an
object, (b) division of terminal quadrants into triangular elements, and (c)
quadtree structure.

tetrahedral elements are generated from the octree by subdividing terminal
octants.

In Figure 12, we illustrate the tree and mesh for a two-dimensional flow
domain containing a small object. The root of the tree represents the entire
domain (Figure 12(c)). The domain is recursively quartered until an ade-
quate resolution of the object is obtained (Figure 12(a)). A smooth gradation
is maintained by enforcing a one-level maximum difference between adjacent
quadrants. After appropriate resolution is obtained, leaf quadrants are sub-
divided into triangular elements that are pointed to by leaf nodes of the tree
(Figures 12(b,c)). Quadrants containing the object are decomposed using the
geometry of the object. Smoothing [29], which normally follows element cre-
ation, is not shown. ‘

Our tree-based based partitioning algorithm creates a one-dimensional or-
dering of the octree and divides it into nearly equal-sized segments based on
tree topology. The first step of the algorithm is the determination of cost
metrics of all subtrees. Cost is currently defined as the number of elements

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 21

within a subtree. For a leaf octant, this would simply be the number of
tetrahedra associated with it. P-refinement would necessitate the inclusion of
an element’s order into the cost function. If the solution algorithm employs
spatially-dependent time steps then, typically, a greater number of smaller
time steps must be taken on smaller elements and this must also be reflected
in the subtree cost. In any event, appropriate costs may be determined by a
postorder traversal of the octree.

The second phase of the partitioning algorithm uses the cost information
to construct the actual partitions. Since the number of partitions is prescribed
and the total cost is known from the first phase, we also know the optimal
size of each partition. Partitions consist of a set of octants that are each the
root of a subtree and are determined by a truncated depth-first search. Thus,
octree nodes are visited in depth-first order, and subtrees are accumulated
into successive partitions. The subtree rooted at the visited node is added
to the current partition if it fits. If it would exceed the optimal size of the
current partition, a decision must be made as to whether it should be added,
or whether the traversal should examine it further. In the latter case, the
traversal continues with the offspring of the node and the subtree may be
divided among two or more partitions. The decision on whether to add the
subtree or examine it further is based on the amount by which the optimal
partition size is exceeded. A small excess may not justify an extensive search
and may be used to balance some other partition which is slightly undersized.
When the excess at a node is too large to justify inclusion in the current
partition, and the node is either terminal or sufficiently deep in the tree, the
partition is closed and subsequent nodes are added to the next partition.

This partitioning method requires storage for nonterminal nodes of the tree
which would normally not be necessary since they contain no solution data.
However, only minimal storage costs are incurred since information is only
required for tree connectivity and the cost metric. For this modest investment,
we have a partitioning algorithm that only requires O(J) serial steps.

Partitions formed by this procedure do not necessarily form a single con-
nected component; however, the octree decomposition and the orderly tree
traversal tend to group neighboring subtrees together. Furthermore, a single
connected component is added to the partition whenever a subtree fits within
the partition.

A tree-partitioning example is illustrated in Figure 13. All subtree costs
are determined by a post order traversal of the tree. The partition creation
traversal starts at the root, Node 0 (Figure 13(a)). The node currently under
investigation is identified by a double circle. The cost of the root exceeds the
optimal partition cost, so the traversal descends to Node 1 (Figure 13(b)). As
shown, the cost of the subtree rooted at node 1 is smaller than the optimal
partition size and, hence, this subtree is added to the current partition, p0,

(a)

[. [
..................

..

‘ PO 1y

Figure 13: A tree partitioning example. (a) The partition-creation traversal
starts at the root. (b) Nodes are visited and added to the current partition
if their subtree fits. (c) When a subtree is too large to fit, (d) the traversal
descends into the subtree. (e) Alternatively, the partition is closed and work
begins on a new partition. (f) The process continues until the traversal is
complete.

and the traversal continues at Node 2 (Figure 13(c)). The cost of the subtree
rooted at Node 2 is too large to add to p0, so the algorithm descends to an
offspring of Node 2 (Figure 13(d)). Assuming Node 4 fits in p0, the traversal
continues with the next offspring of Node 2 (Figure 13(e)). Node 5 is a terminal
node whose cost is larger than the available space in p0, so the decision is made
to close p0 and begin a new partition, pl. As shown (Figure 13(f)), Node 5
is very expensive, and when the traversal is continued at Node 3, pl must be
closed and work continues with partition p2.

Our partitioning algorithm is similar in spirit to that of Farhat’s Automatic
finite element decomposer [15]. Farhat essentially performs a breadth-first
search of the mesh, accumulating elements into partitions. Subdomains are
accumulated during the search, and each is closed in turn when its cardinality
reaches the number of elements divided by the number of processors. This is
directly analagous to closing partitions in the tree algorithm. Also analagous
is the possibility of subdomains (partitions) which are not single connected
components. However, the similarity ends with the hierarchical nature of the
tree traversal. Larger scale information is available to the tree algorithm. With

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 23

Figure 14: Iterative rebalancing of tree-based partitions. The subtree rooted
at Node 4 (a) has been shifted from p0 to p1 (b) to relieve a load imbalance.
The new root of pl is Node 2, the common parent of Nodes 4 and 3.

this information, at each step it may add larger and more compact pieces of
mesh to a partition, reducing the likelihood of thin partitions with large surface
area.

The tree-traversal partitioning algorithm may easily be extended for use
with a parallel adaptive environment. An initial partitioning is made using the
serial algorithm described above. As the numerical solution advances in time,
h- and/or p-refinement introduces a load imbalance. To obtain a new parti-
tioning, let each processor compute its subtree costs using the serial traversal
algorithm within its domain. This step requires no interprocessor commu-
nication. An inexpensive parallel prefix operation may be performed on the
processor-subtree totals to obtain a global cost structure. This information
enables a processor to determine where its local tree traversal is located in the
global traversal.

Now, following the serial procedure, each processor may traverse its sub-
trees to create partitions. A processor determines the partition number to
start working on based on the total cost of processors preceeding it. Each pro-
cessor starts counting with this prefix cost and traverses its subtrees adding
the cost of each visited node to this value. Partitions end near cost mutiples of
N/P, where N is the total cost and P is the number of processors. Exceeding
a multiple of N/P during the traversal is analagous to exceeding the optimal
partition size in the serial case and the same criteria may be used to deter-
mine where to end partitions. When all processors finish their traversals, each
subtree (and its associated data) is assigned to a new partition and may be
migrated to its new location. Migration may be done using global communica-
tion; however, on some architectures, it may be more efficient to move data via
simultaneous processor shift operations. This linear communication pattern is
made possible by the one-dimensional nature of the partition traversal.

While the cost of computing the new partition is small, the cost of data

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 24

movement is likely to be high and it would be desirable to amortize this by
tolerating small imbalances. A strategy to delay the need for complete reparti-
tioning would simply shift partition boundaries, thus, migrating subtrees from
a processor P, to its neighbors P,_; and P,,,. If, for example, processor
P, seeks to transfer cost m to P,_;, it simply traverses its subtrees accumu-
lating their costs until it reaches m. The nodes visited comprise a subtree
which may be transferred to P,.; and which is contiguous with the subtrees
in P,_;. Likewise, if P, desires to transfer work to P,4;, the reverse traversal
could remove a subtree from the trailing part of P,. Consider, as an example,
the subtree rooted at Node 4 of Figure 14(a) and suppose that its cost has
increased through refinement. In Figure 14(b), we show how the partition
boundary may be shifted to move the subtree rooted at Node 4 to partition
pl. The amount of data to be moved from processor to processor may utilize
a relaxation algorithm or the tiling procedure discussed in Sections 2 and 3.

Example 4.1 Performance results obtained by applying the tree-based mesh
partitioning algorithm to various three-dimensional irregular meshes are pre-
sented in Figures 15 and 16. The meshes were generated by the Finite Octree
mesh generator [29]. “Airplane” is a 182K-element mesh of the volume sur-
rounding a simple airplane [13]. “Copter” is a 242K-element mesh of the
body of a helicopter [13]. “Onera,” “Onera2,” and “Onera3” are 16K-, T0K-,
and 293K-element meshes, respectively, of the space surrounding a swept, un-
twisted Onera-M6 wing which has been refined to resolve a bow shock [14].
“Cone” is a 139K-element mesh of the space around a cone having a 10° half-
angle and which also has been refined to resolve a shock.

The quality of a partition has been measured in Figure 15 as the percent of
element faces lying on inter-partition boundaries relative to the total number
of faces of the mesh. The graph displays these percentages as a function of
the optimal partition size. In all cases the cost variance between the parti-
tions is very small (about as small as the maximum cost of a leaf octant).
The proportion is, in a sense, the total surface area that partitions hold in
common. Smaller ratios require less communication relative to the amount of
local data access. This measure is closely related to the number of “cuts” that
the partition creates [24, 20, 30]; however, we have chosen to normalize by the
total number of faces in order to compare partition quality over a wide range
of mesh sizes and number of partitions. '

The data of Figure 15 show the expected behaviour that the interface
proportion approaches zero as the partition size increases (due to the number
of partitions approaching unity). Conversely, as the optimal partition size
approaches unity (due to number of partitions approaching the number of
elements), the interface proportion goes to unity. The interface proportion is
less than 12% when the partition size exceeds 1000 for these meshes. Interfaces

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 25

45

35

Percent Faces on Boundary

T T ¥ T 1

“airplane” -o—
-

"onera" -x--
oneraz2" ~&--
"onera3" -¥--

1000 2000 3000 4000 5000 6000
Optimal Partition Size

Figure 15: Global performance measure of the tree partitioning algorithm on
the five meshes of Example 4.1.

70

50

30

Percent Faces on Boundary

20

10

1 L]]
"airplane” -o—
"cong” -+--

Figure 16:

1000 2000 3000 4000 5000 6000
Optimal Partition Size

Local performance of the tree partitioning algorithm on the five

meshes of Example 4.1.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 26

drop to below 9% and 8%, respectively, for partition sizes of 2000 and 3000.
This performance is comparable to recursive spectral bisection [23] but requires
much less computation (O(J) as opposed to O(J?) [26]).

The best performance occurred with the helicopter mesh, which was the
only mesh of a solid object (as opposed to a flow field surrounding an object).
The solid can easily be cut along its major axis to produce partitions with
small inter-partition boundaries, and was included for generality. The lowest
performance occurred with the cone mesh. This is most likely due to the model
and shock region being conically shaped, which is somewhat at odds with the
rectangular decomposition imposed by the octree.

In general, inter-partition boundaries should be less than 10%, indicating
partition sizes of 2000 or more. This minimum partition size is not an excessive
constraint, since a typical three-dimensional problem employing a two million-
element mesh being solved on a 1024-processor computer would have about
2000 elements per processing element.

Another measure of partition quality is the percent of a partition’s element
faces lying on inter-partition boundaries relative to the total number of faces
in that partition. This is shown in Figure 16. This number is, in a sense, the
ratio of surface area to volume of a partition. For our example meshes, this
measure was below 22% and 18%, respectively, for partition sizes of 1000 and
1500.

Example 4.2 In Figure 17 we show partitions of several meshes from Exam-
ple 4.1. The partitions exhibit a blocked structure; however, several parti-
tions of the airplane mesh appear to be made up of disconnected components.
While this is possible, although unlikely, in this case the partitions appear
to be disconnected because the display is a two-dimensional slice through the
three-dimensional domain.

Example 4.3 In Figure 18 we show the pressure contours of a Mach 2 Eu-
ler flow past the “Cone” mesh of Example 4.1. The solution employs the
discontinuous finite element scheme [5, 8, 9, 10] with van Leer’s flux vector
splitting [32] and was computed on a Thinking Machines CM-5 computer with
128 processors. Several h-refinement steps were required to yield this mesh. At
each iteration, elements were marked with the desired tree level (either larger
for refinement, or smaller for coarsening), and a new global mesh created to
satisfy these constraints. The shock surface and pressure contours are shown
above; below are examples of how the mesh may be partitioned for 16 and 32
processor machines. Each color represents membership in a different partition
(and, hence, residence on a different processor).

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution = 27

Figure 17: The airplane mesh, and three refinements of the Onera M6 wing
mesh, all divided into 32 partitions. Colors denote partition membership.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 28

Figure 18: Shock surface and pressure contours found when computing the
Mach 2 flow past a cone having a half-angle of 10° (top). Partitions of the mesh
into 16 (left) and 32 (right) pieces (bottom). Colors in the top figures denote
pressure levels while those of the bottom figures denote partition membership.

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 29

5 Discussion

We have described partitioning strategies that are appropriate for load bal-
ancing parallel distributed-memory computation with adaptive A- and p-
refinement techniques for partial differential equations. Tiling performs local
balancing within overlapping neighborhoods and we demonstrate its effective
performance by using it with a local finite element technique (1, 8,9, 10, 11]
to solve two-dimensional systems of conservation laws by adaptive h- and
p-refinement. The next step involves combining the A- and p-refinement pro-
cedures to develop an hp-refinement algorithm. When used with hyperbolic
systems, it would appear to be appropriate to use h-refinement at points of
discontinuity and p-refinement in regions of smooth flow. Appropriate combi-
nations of h- and p-refinement at discontinuities, such as the 1:15 ratio used
with elliptic problems [18], may, however, provide superior performance.

Relative to tiling, redistribution through pairwise exchanges offers the pos-
sibility of rebalancing loading more quickly and of providing a better control on
the shape of partitions to reduce the communications volume. Possibilities for
partition shape control involve use of orthogonal recursive bisection [6] in, say,
directions of principal axes of inertia of partitions. The pairwise-exchange redi-
stirbution procedure is being implemented for execution on a MIMD computer
and development and testing will continue using three-dimensional problems
in biomechanics and compressible flow as examples.

Octree-based partitioning has promise as an effective and efficient parti-
tioning strategy that may either be used in conjunction with octree mesh
generation [29] or on its own. It appears to provide a suitable means of con-
troling communications volume based solely on the geometric decomposition
of space. This aspect of the procedure must be explored more completely. Par-
allel partitioning techniques and incremental migration strategies for use with
adaptivity are being developed. It should also be possible to combine octree
partitioning with other strategies to provide additional control of communica-
tions volume. For example, octree decomposition could be used to provide an
initial partition that could be continued by recursive spectral bisection [26].
Recursive spectral bisection at terminal tree node may be parallelized [24], it
costs less than a global application because of the smaller partition domains
and its nonlinear complexity, and it is more effective on smaller regions [23].

Theoretical issues associated with each algorithm must be investigated.
Convergence under iteration of either the tiling or pairwise exchange migration
strategies must be established, as must the avoidance of limit cycles.

Comparisons between methods and with other techniques must be per-
formed; however, the three techniques described herein are under develop-
ment and are not finished products. Software developed with portability in
mind is, nevertheless, being executed on diverse distributed-memory platforms.

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 30

With an aim of unifying our research effort and of performing explicit com-
parisons, we find ourselves heading for a message passing environment using
the Chameleon protocol [17].

6 Acknowledgements

This research was supported by the U.S. Army Research Office Contract Num-
ber DAAL03-91-G-0215 and DAALO3-89-C-0038 with the University of Min-
nesota Army High Performance Computing Research Center (AHPCRC) and
the DoD Shared Resource Center at the AHPCRC; by the Massively Parallel
Computation Research Laboratory, Sandia National Laboratories, operated
for the U.S. Department of Energy under contract #DE-AC04-76DP00789,
Research Agreement AD-9585; a DARPA Research Assistantship in Parallel
Processing administered by the Institute for Advanced Computer Studies, Uni-
versity of Maryland; and the Grumman Corporate Research Center, Grumman
Corporation, Bethpage, NY 11714-3580.

We also wish to thank Thinking Machines Corporation, and in particular
Zdenék Johan and Kapil Mathur, for their assistance with the CM-5.

References

(1] S. Adjerid, M. Aiffa, and J. E. Flaherty, Adaptive Finite Element Methods
for Singularly Perturbed Elliptic and Parabolic Systems, in preparation.

[2] S. Adjerid, J. Flaherty, P. Moore, and Y. Wang, High-Order Adaptive
Methods for Parabolic Systems, Physica-D, Vol. 60, 1992, pp. 94-111.

(3] D. C. Arney and J. E. Flaherty, An Adaptive Mesh Moving and Local
Refinement Method for Time-Dependent Partial Differential Equations,
ACM Trans. Math. Software, Vol. 16, 1990, pp. 48-71.

(4] L. Babuska, The p- and hp-Versions of the Finite Element Method. The
State of the Art, in Finite Elements: Theory and Appliations, Springer-
Verlag, New York, 1988.

[5] R. Biswas, K. D. Devine, and J. E. Flaherty, Parallel, Adaptive Finite
Element Methods for Conservation Laws, Appl. Numer. Math., to appear.

(6] M. J. Berger and S. H. Bokhari, A Partitioning Strategy for Nonuniform
- Problems on Multiprocessors, IEEE Trans. Comput., Vol. C-36, No. 5,
May, 1987, pp. 570-580.

[7) M. J. Berger and J. Oliger, Adaptive Mesh Refinement for Hyperbolic -
Partial Differential Equations, J. Comput. Phys., Vol. 53, 1984, pp. 484-
512,

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 31

(8] B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge-Kutta Local Pro-
jection Discontinuous Galerkin Finite Element Method for Conservation
Laws III: One-Dimensional Systems, J. Comput. Phys., Vol. 84, 1989, pp.
90-113.

[9] B. Cockburn and C.-W. Shu, TVB Runge-Kutta Local Projection Dis-
continuous Galerkin Finite Element Method for Conservation Laws II:
General Framework, Math. Comp., Vol. 52, 1989, pp. 411-435.

[10] B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge-Kutta Local Pro-
jection Discontinuous Galerkin Finite Element Method for Conservation
Laws IV: The Multidimensional Case, Math. Comp., Vol. 54, 1990, pp.
345-581.

[11] K. Devine, J. Flaherty, R. Loy, and S. Wheat, Parallel Partitioning Strate-
gies for the Adaptive Solution of Conservation Laws, RPI Dept. of Comp.
Sci. Tech. Rep. 94-1, 1994,

(12] P. Devloo, J. T. Oden, and P. Pattani, An h-p Adaptive Finite Element
Method for the Numerical Simulation of Compressible Flow, Comput.
Methods Appl. Mech. Engrg., Vol. 70, 1988, pp- 203-235.

[13] S. Dey, personal communication, 1993.
[14] M. Dinar, personal communication, 1993.

[15] C. Farhat, A Simple and Efficient Automatic FEM Domain Decomposer,
Comp. and Struct., Vol. 28, No. 5, 1988, pp. 579-602.

[16] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Math. J.,
Vol. 23, 1973, pp. 298-305.

(17] W. Gropp and B. Smith, Users Manual for the Chameleon Parallel Pro-
gramming Tools, Argonne National Laboratories Tech. Rep. ANL-93/23,
Argonne, 1993.

(18] W. Gui and I. Babuska, The h-, p- and hp- Versions of the Finite El-
ement Method in One Dimension. Part I: The Error Analysis of the p
Version. Part II: The Error Analysis of the h and hp Versions. Part III:
The Adaptive hp Version, to appear in Numerische Mathematik.

[19] S. W. Hammond, Mapping Unstructured Grid Computations to Mas-
sively Parallel Computers, Ph.D. Dissertation, Computer Science Dept.,
Rensselaer Polytechnic Institute, Troy, 1991.

deCougny et. al. / Load Balancing for Paralle] Adaptive PDE Solution 32

[20] B. Hendrickson and R. Leland, An Improved Spectral Graph Partitioning
Algorithm for Mapping Parallel Computations, Sandia National Labora-
tories Tech. Rep. SAND92-1460, Albuquerque, 1992.

[21] B. Hendrickson and R. Leland, Multidimensional Spectral Load Balanc-
ing, Sandia National Laboratories Tech. Rep. SAND93-0074.

[22] J. Jaja, An Introduction to Parallel Algorithms, Addison-Wesley Publish-
ing Company, Reading, 1992.

(23] Z. Johan, personal communication, 1993.

(24] Z. Johan, K. Mathur, and S. L. Johnsson, An Efficient Communication
Strategy for Finite Element Methods on the Connection Machine CM-5
System, Thinking Machines Tech. Rep. No. 256, May, 1993. Submitted to
Computer Methods in Applied Mechanics and Engineering.

[25] E. Leiss and H. Reddy, Distributed Load Balancing: Design and Perfor-
mance Analysis, W. M. Keck Research Computation Laboratory, Vol. 5,
1989, pp. 205-270.

[26] A. Pothen, H. Simon, and K.-P. Liou, Partitioning Sparse Matrices with
Eigenvectors of Graphs, SIAM Journal of Matrix Analysis and Applica-
tions, Vol. 11, 1990, pp. 430-452.

[27] E. Rank and I. Babuska, An Expert System for the Optimal Mesh Design
in the hp-Version of the Finite Element Method, Intl. Jrnl. Num. Meth.
in Engng., Vol. 24, 1987, pp. 2087-2106.

[28] H. N. Reddy, On Load Balancing, Ph.D. Dissertation, Dept. Comp. Sci.,
Univ. of Houston, Houston, TX, 1989.

[29] M. S. Shephard and M. K. Georges, Automatic Three-Dimensional Mesh
Generation by the Finite Octree Technique, Int. J. Numer. Meths. Engng.,
Vol. 32, No. 4, 1991, pp. 709-749.

(30] H. D. Simon, Partitioning of Unstructured Problems for Parallel Process-
ing, Comput. Systs. Engng., Vol. 2, 1991, pp. 135-148.

(31] B. K. Szymanski and A. Minczuk, A Representation of a Distribution
Power Network Graph, Archiwum Elektrotechniki, Vol. 27, No. 2, 1978,
pp. 367-380.

[32] B. Van Leer, Flux Vector Splitting for the Euler Equations, ICASE Re-
port. No. 82-30, Inst. Comp. Applics. Sci. Engng., NASA Langley Re-
search Center, Hampton, 1982.

deCougny et. al. / Load Balancing for Parallel Adaptive PDE Solution 33

[33] C. Walshaw and M. Berzins, Dynamic Load-Balancing for PDE Solvers
on Adaptive Unstructured Meshes, Preprint, School of Computer Studies
Tech. Rep., University of Leeds, 1992.

[34] S. R. Wheat, A Fine Grained Data Migration Approach to Applica-
tion Load Balancing on MP MIMD Machines, Ph.D. Dissertation, Dept.
Comp. Sci., Univ. of New Mexico, Albuquerque, NM, 1992.

[35] S. R. Wheat, K. D. Devine, and A. B. Maccabe, Experience with Au-
tomatic, Dynamic Load Balancing and Adaptive Finite Element Com-
putation, Proc. of Hawaii International Conference on System Sciences,
January, 1994, to appear.

[36] V. G. Vizing, On an estimate of a chromatic class of a multigraph, Proc.
Third Siberian Conf. on Mathematics and Mechanics, Tomsk, 1964.

